Dr. Jason R. Karp, PH.D May 22, 2013 TWEET COMMENTS 0

Ultimate Training - Page 2


Long Runs

The main difference between 10K training and marathon training is the inclusion of long runs in your program, with the amount of time spent on your feet being more important than the number of miles you cover. Repeatedly running for more than two hours presents a threat to the muscles’ survival by depleting their store of glycogen. However, the human body responds rather elegantly to situations that threaten or deplete its fuel supply: It synthesizes and stores more than what was previously present, thus increasing endurance for future efforts. Empty a full glass, and you get a refilled larger glass in its place. Much like college fraternity parties. The more glycogen you have packed into your muscles, the greater your ability to hold your marathon pace to the finish.

If you’re training for a trail marathon, do most of your long runs on trails so you get used to the uneven terrain, and run in trail-running shoes. While your long run should not comprise more than about 30 percent of your weekly mileage, this rule can be broken if you are only able to run a few times per week. Run at a comfortable, conversational pace (about two minutes per mile slower than 5K race pace, or about 70 to 75 percent of maximum heart rate). Lengthen your long run by one mile each week for three or four weeks before backing off for a recovery week.

If you run more than about 40 miles per week, or if you run faster than about eight-minute mile pace, you can add two miles at a time to your long run. Keep adding miles until you reach 22 to 24 (or about 3 to 3½ hours, whichever comes first), and do your longest run two to three weeks before your marathon.

Lactate Threshold (LT) Runs

LT runs are also very important when preparing for the marathon. The longer the race you’re training for, the more important it is to train your LT, because the closer the race pace will be to your LT pace and the more important it becomes to hold a hard pace for an extended time. And for a marathon, you need to extend the duration of your LT runs. To accommodate the increased duration, you can run a bit slower than LT pace (which I call tempo runs). Since optimal marathon pace is only about 15 to 20 seconds per mile slower than LT pace (with the difference in paces getting larger as performance level declines), the goal of marathon training is to raise your LT and to increase your ability to sustain as high of a percentage of your LT as possible.

If you’re experienced with doing many long runs and want to give your marathon performance a boost, try inserting LT-paced running into some medium-long runs (12 to 16 miles). These LT/LSD (long slow distance) combo runs simulate the physiological and psychological fatigue of the marathon. Like long runs, they severely lower muscle glycogen, stimulating its synthesis and storage. You can include LT segments at the beginning, middle and/or end of the run. Some examples are: 1) 4 miles at LT pace + 8 miles easy; 2) 5 miles easy + 3 miles at LT pace + 5 miles easy + 3 miles at LT pace; and 3) 10 miles easy + 4 miles at LT pace. After you’ve done a number of these combo runs, try running faster than LT pace for the last mile or two of the final LT segment, which will sharpen you for the marathon. For example, run 9 miles easy + 4 miles at LT pace + 1 to 2 miles faster than LT pace. You may want to run the LT segments on a track, where you can closely monitor your pace. Because these workouts are very tough, alternate the long run with the LT/LSD combo run every other week, and after three or four weeks, don’t do either run for one recovery week.

Ultramarathon Training

While both the marathon and ultramarathon require the largest glycogen storage capacity possible, and a very efficient capacity to make new glucose and use fat, they are paramount for the ultramarathon. Therefore, one of the goals of ultramarathon training is to teach your muscles to rely on fat as fuel. While muscles’ store of carbohydrate is limiting, the human body’s fat store is virtually unlimited, with enough to fuel about five days of marathon running or about 1000 miles of walking. While women are at a cardiovascular disadvantage in that they have a smaller cardiac output and less hemoglobin in their blood to transport oxygen, research has shown they have a greater capacity to metabolize fat and conserve glycogen, which may give them an advantage for very long endurance activities. Indeed, in 2002 and 2003, Pam Reed beat all the men at the 135-mile Badwater Ultramarathon.

Very Long Runs

There are two ways to make your muscles more effective at using fat for energy: 1) run/walk for very long periods of time (4 to 6 hours); and 2) begin your runs with low muscle glycogen by consuming a low-carbohydrate diet for a couple of days before each long run. When you threaten the survival of muscles by depriving them of their preferred fuel, a strong signal is sent to combat the threat and use other fuel sources more effectively. The downsides to training with little glycogen, however, is that 1) it doesn’t feel good; and 2) it compromises your intensity level since fast running depends on carbohydrates for fuel. If you’re going to try training with low muscle glycogen, make sure you consume lots of carbohydrates before your ultramarathon, so you “train low, race high.”

Given its duration, the ultramarathon also requires you to consume calories during the race. If you’ve ever eaten during a long endurance event, you know the mess it can make of your digestive system. Practice eating different foods in training to see what your stomach can handle.

Like the marathon, dehydration, muscle-fiber damage, hyperthermia and psychological fatigue are huge issues for the ultramarathon, so use long runs to practice dealing with them. Since your sweat rate exceeds your ability to ingest fluid while running, dehydration is difficult to prevent. However, since endurance performance declines with only a two- to three-percent loss of body weight due to fluid loss, it’s important to minimize its effects by drinking fluids with sodium. More water is conserved by the kidneys when you ingest sodium with the water.

Climate has a greater effect on the ultramarathon than it does on any other race. Depending on your chosen race, prepare yourself by acclimatizing to hot and humid conditions beforehand. While cardiovascular adaptations to running in the heat are nearly complete within one week, the sweating response takes about two weeks, so give yourself at least two weeks of slowly introducing yourself to the heat.

The next time you train for a 10K, marathon or ultramarathon, follow these training guidelines. And if you train smart enough, not only will you increase your fitness, you may even be able to chase Pheidippides.

Dr. Jason R. Karp has a Ph.D. in exercise physiology, and is director and coach of REVO2LT Running Team, a freelance writer and competitive runner. He writes for numerous international running, coaching and fitness magazines. He has coached high-school and college cross country and track and field, and currently coaches athletes of all levels and consults with fitness professionals through RunCoachJason.com.


Add comment

Security code