Become a Member

Get access to more than 30 brands, premium video, exclusive content, events, mapping, and more.

Already have an account? Sign In

Become a Member

Get access to more than 30 brands, premium video, exclusive content, events, mapping, and more.

Already have an account? Sign In

Brands

Trail Tips

An Overview of the Norwegian Approach to Running Training

Some athletes from Norway are using variations of intensity-controlled threshold training, double-workouts, and focused specific work to great success on the international stage. The approach has important takeaways for all athletes. Let’s take a deep dive into some training theory.

Lock Icon

Unlock this article and unwrap savings this holiday season.

Already have an Outside Account? Sign in

Outside+ Logo

Now 30% Off.
$4.99/month $3.49/month*

Get the one subscription to fuel all your adventures.

  • Map your next adventure with our premium GPS apps: Gaia GPS Premium and Trailforks Pro.
  • Read unlimited digital content from 15+ brands, including Outside Magazine, Triathlete, Ski, Trail Runner, and VeloNews.
  • Watch 600+ hours of endurance challenges, cycling and skiing action, and travel documentaries.
  • Learn from the pros with expert-led online courses.
Join Outside+


*Outside memberships are billed annually. You may cancel your membership at anytime, but no refunds will be issued for payments already made. Upon cancellation, you will have access to your membership through the end of your paid year. More Details

Last week, Olympian, doctor and coach Marius Bakken published a fantastic article on the “Norwegian model” of training. It’s a long read, but extremely worth it, delving into the nooks and crannies of training principles used by some of the best athletes in the world. Today, I want to break down some elements in the Norwegian approach for a general audience because I think the key principles are relevant to all endurance athletes.

First, the obvious question. Norway? The country with about the same population as South Carolina? What and also why? A revelation over the last few years has been the ascendance of Norwegian endurance superstars on the track and in triathlon. In particular, the Ingebrigtsen brothers are lighting up the track, highlighted by Jakob’s 1500 meter gold medal at the Olympics. In triathlon, Kristian Blummenfelt won the gold medal. That’s layered on Norway’s historical dominance of winter Olympic sports like cross-country skiing. What unites the athletes across the sports?

I think there’s a strong argument that it’s how physiologists have been instrumental in helping guide training theory. That’s especially evident in cross-country skiing (full article here). For example, ​​a 2021 study in the Frontiers in Sports and Active Living journal examined the training characteristics of 12 world-class male long-distance skiers training for events that were several hours long, finding that nearly 90% of that training was lower intensity (zone 1 in a 3-zone model), with higher intensity training following strict protocols that limited fatigue accumulation. (Note: the training theory we will talk about today involves a much higher proportion of zone 2 training.) One of the more interesting variables for cross-country ski training is that blood lactate levels are monitored throughout training to dial in precise intensity levels.

A 2019 study in the International Journal of Sports Science and Coaching shows the same vigilance about lactate levels for the Ingebrigtsens. In a recent podcast with Scientific Triathlon, Coach Arild Tveiten relays information about similar intensity control for Blummenfelt. While the Norwegian principles are exciting, they are not new, in Norway or around the world. Dr. Bakken describes writing about them in the late 1990s. Coach Renato Canova has relied heavily on controlled intervals and a focus on lactate threshold for decades, and back in 2000 Dr. Bakken provided an overview of Kenyan training principles that looked similar. The Norwegians may not be reinventing the wheel (and they wouldn’t argue that they are), but I think that they deserve massive credit for refining the design of the wheel to a science that has implications for all athletes.

Some disclaimers before we kick this off. It’s uncertain how well these principles apply to athletes that aren’t at the far right of the bell curve for genetic talent, particularly in running, which has a higher biomechanical/neuromuscular input than a sport like cycling. I’ll get into some of those complications in more detail later. There could be differing responses based on specific genetic differences, particularly muscle fiber typology, which will impact aerobic and metabolic processes. Aging athletes or those that are VO2-max or training volume-limited may need a heavier emphasis on intensity or speed. Sex differences could be relevant too, particularly in how well a blocked workout design functions given how it impacts sex hormones, cortisol, and energy availability. 

Finally, whenever talking about endurance sports, it’s important to acknowledge the elephant in the room: substances that can alter the way physiology responds to intense training (I’m intentionally not saying performance enhancing drugs, given the numerous revelations over the years that sometimes athletes take gray-area substances for supposed performance benefit). I don’t think that’s a factor for today’s topic, but I don’t have any specific knowledge.

Whatever causes someone to be an outlier, it’s important to keep in mind that you should be 99% curiously excited while retaining a right to be 1% cautiously skeptical, in order to avoid making erroneous conclusions. That final disclaimer was brought to you by someone who first learned about cycling training theory from a book on Lance Armstrong. It was like learning about sex by reading a book that described the programming language for a vibrator.

I am going to break this article down into 3 key principles from Bakken’s article and other sources. The specifics are immensely complicated, so go read that article for more, and I apologize if I misstep. 

RELATED: When (and Why) to Train Below Aerobic Threshold(Opens in a new browser tab)

3 Key Principles

Principle One: Athletes control intensity using lactate monitoring, with a higher concentration of easier threshold training than some other approaches, layered on top of high aerobic volume.

Before getting into how lactate monitoring is used, a quick primer. A seminal 2006 study in the Scandinavian Journal of Medicine & Science in Sports was instrumental in classifying the intensity ranges used in subsequent studies. A general summary of the three zones:

 

  • Zone 1: under the first ventilatory threshold, or 2 mmol of lactate (think very easy running up to more steady running for advanced athletes)
  • Zone 2: between the first and second ventilatory thresholds, generally between 2 and 4 mmol of lactate (think steady running to traditional threshold, or approximately 1-hour effort)
  • Zone 3: above the second ventilatory threshold (think faster intervals and harder hill work)

RELATED: Aerobic Build Weeks

The key element here involves the lactate concentrations. To simplify it a ton, lactate is produced as our bodies use glucose to fuel ATP production during glycolysis. Lactate is a fuel source for cells, and it’s accompanied by a hydrogen ion that changes muscle pH and contributes to fatigue. A 2018 review in Cell Metabolism described the lactate shuttle where the cells use lactate for energy. If this shuttling mechanism is overstressed, lactate levels and fatigue rise and exercise becomes less sustainable. A great overview by Dr. Howard Luks is here.

The Norwegian model as outlined by Bakken involves consistent lactate monitoring. Dr. Bakken found that levels around 3.0 mmol or lower were ideal to optimize his response, and some Kenyan runners were as low as 2.0 mmol during threshold intervals. By avoiding overstressing the body, athletes can do a higher quantity of intervals and work on that lactate shuttling mechanism more effectively. That’s key for performance at all distances because it is the foundation of how the body produces energy at more intense (but still largely aerobic) outputs, from a few minutes on up. Plus, there are added benefits for injury prevention, the nervous system, and the endocrine system. These intensity-controlled intervals are layered with big weekly training volumes, often over 100 miles per week, with variance based on the athlete. 

Takeaways: Faster is not always better on intervals. An athlete that diligently follows the Norwegian model could almost always do their intervals faster. But by going faster, they’d be neglecting or reversing some of the potential aerobic benefits, particularly those involving lactate shuttling and aerobic development. That’s supported by an amazing 2019 study in the Journal of Strength and Conditioning Research that looked at 85 elite athletes over their first seven years of serious training, which found that easy running volume, short intervals, and tempos had the highest correlation with long term growth. Meanwhile, longer intense intervals had the lowest correlation. In an article summarizing those findings, I said: “During long intervals, athletes may be tempted to make each individual effort like a little race, which may lead to fewer beneficial long-term adaptations.” Trying to use the Norwegian model but going too hard would likely end in disaster.

RELATED: Five Workouts To Get You Race-Day Ready

The exact method of using sustainable threshold intervals becomes very complicated in practice. A pro athlete with a massive aerobic base may find that their lactate threshold and aerobic threshold are compressed–that’s how a champion marathoner can go so fast for just over 2 hours. Thus, their threshold intervals may be lower lactate but still really fast, like the Kenyan athlete example. A less aerobically developed athlete may be higher lactate but relatively slow on threshold intervals relative to their 5K speed. 

While lactate monitoring is the only true way to apply the Norwegian approach, my co-coach Megan and I do not do finger pricks for the athletes we coach. We mostly coach remotely, and I am not a good enough drone pilot to make sure I don’t prick something less receptive than a finger. Instead, we like to focus on cues–primarily 1-hour effort, half-marathon effort, controlled breathing, no muscle burning, etc., particularly after an athlete develops their speed. For more information, we sometimes do a Joe Friel-style lactate threshold heart rate test–a 30 minute hard effort, with the average heart rate of the last 20 minutes approximating LTHR, with threshold intervals capped at around 5 beats per minute less that that in advanced athletes (adjusting based on how they feel). 

Another principle from Dr. Bakken is that it’s often better for lactate levels to rise gradually during a workout. So when doing workouts, it may be ideal to ease into the effort. We’ll often have our athletes do relaxed longer intervals with a speed finish on shorter intervals or hills, particularly for athletes that are speed-limited. An example might be 8-10 x 3 min around threshold effort with 1 minute easy recovery, followed by 5 minutes easy, then 5 x 20-30 second fast hills.

All that said, a lactate test and monitoring would be best. It takes discipline and confidence to avoid grinding yourself into fine dust on workouts.

RELATED: Tempo Runs 101(Opens in a new browser tab)

Principle Two: Higher intensity work is used for specific adaptations.

The focus on very controlled threshold training brings up the conundrum: how do slower intervals prepare an athlete to go really freaking fast? How can a 1500 meter Olympic champion do so much interval work that is substantially slower than race pace?

The answer gets back to how the body actually generates and uses energy during high intensity events. The same lactate/pyruvate processes are key, just at higher lactate levels. So optimizing those processes should improve all performance. But that still leaves the problem of developing mechanical adaptations to actually put out that power when it counts, plus the specific adaptations to sustain that power. We don’t care about the checks that the heart, lungs, and cells can write if the leg muscles and neuromuscular system can’t cash them.

The Norwegian model outlined by Dr. Bakken still includes top-end output work–primarily involving fast strides and short hills (similar to Lydiard models). A sample week in the article had 2 threshold days (with 2 workouts on each day, which will be the subject of the next point) and 1 hill day involving 20 x 220 meter harder hills at 8 mmol lactate, and a speed day with shorter sprints/strides. Races likely play a big role in specific adaptations as well.

It doesn’t take a massive amount of high-intensity intervals to develop speed and power. As Dr. Bakken says in the article, “the mechanical ‘speed’ you are running will always at one point or the other be majorly be limited by the aerobic abilities.” In other words, what feels like a speed limitation is often an aerobic limitation.

Takeaway: You don’t need to run fast all of the time to run fast when it counts. However, many professional athletes are naturally fast, or have genetics that want to go fast with the smallest amount of reinforcement. That’s my big issue with MAF training for example, where athletes are capped at a certain low intensity on almost all running–I think most of the people that have excelled with that type of approach are genetically gifted and have the time/physiology to handle high-volume, so that focusing almost solely on the aerobic system still leads to very fast paces. For all athletes, it’s likely key to keep up close-to-max output with strides and short hills, like the Norwegians. 

My big question about applying the Norwegian model to non-outlier athletes is whether it can be used to get fast if that skill has not already been developed, or as an athlete ages. Many athletes probably need to develop their velocity at VO2 max as well (a higher intensity level than threshold), at least initially in their athletic trajectory, to make the threshold training correspond with faster paces (with the musculoskeletal, neuromuscular, and biomechanical systems being the main limiters, rather than the aerobic system). I predict that a beginner runner doing super slow thresholds relative to their possible genetic potential will not have fantastic outcomes unless they can handle a massive quantity of work. But if that same athlete first develops their speed, an increased focus on threshold training may have optimal outcomes later. The same goes for an aging or volume-limited athlete that may not be getting adequate adaptation stress.

RELATED: Easy/Moderate Fartlek Workouts for Building Speed and Endurance

Principle 3: Block workout days are a key part of optimizing the response to lactate-controlled training.

Here’s the big, sexy point–double threshold workout days. I started using these for advanced athletes a few years ago, sometimes preceding exciting national and international performances, and based on our team data from those interventions, it can really work for trail and ultra runners. But again–many of those athletes are so talented that it’s possible a number of different interventions would have led to breakthroughs.

Dr. Bakken describes a fascinating experiment to see how to get the best response from threshold training. Intervention 1 involved 7-10 days with controlled threshold sessions. Intervention 2 involved massive amounts of threshold work in a single session, something like 80+ minutes. Intervention 3 involved blocking the threshold work into a two-a-day approach. For him, intervention 3 won in a landslide.

These twice-a-week double-threshold days are an X factor for the Norwegian model. Similar in some ways to Canova’s block workouts, these threshold days involve AM and PM workouts with threshold intervals. The idea is that this approach involves the most time at the threshold sweet spot, without accumulating excessive muscular fatigue that makes the sweet spot require slower paces to finish workouts (or increasing injury risk). There may be other adaptation benefits as well, possibly related to the complex interaction of physiology, genetics, and hormone pulses during the day.

The exact methods for double threshold days have a lot of variance based on the sources I have looked at over the years. In some approaches, one of the sessions is harder–either at a higher lactate level or more volume. In others, it’s distributed evenly. Usually, athletes do intervals rather than tempos to control lactate accumulation and avoid excess muscular fatigue, though I often use tempos for athletes who are volume- or time-limited.

One example from the article involved 6-minute intervals in the morning at a slightly lower lactate (1-minute recoveries), and slightly more intense 1-minute intervals (30 seconds recovery) in the PM. A similar example from the Ingebrigtsens was 5 x ~6 min with 1 min recovery at 2.5 mmol lactate in the AM and 25 x 400 at 3.5 mmol lactate with 30 seconds recovery in the PM. Remember, this workout style involves very controlled intervals for these athletes. While that looks daunting, threshold work should feel pretty comfortable and controlled.

Takeaway: Double workouts are a cool training wrinkle that can have outsized benefits for an athlete that properly controls their efforts. For trail athletes, I usually keep the overall volume a bit lower, aiming for 15-30 minutes of threshold work in the AM and PM, spread much more sporadically throughout the training cycle, and often more resembling intense Canova blocks rather than less intense Norwegian clusters. That being said, it’s a place where my own training philosophy is evolving for professional athletes in particular (and I bet my approach will look a bit different in a few years after Megan and I gather more data for trail and ultra athletes). The treadmill is a great option to give it a try. Uphill treadmill doubles allow athletes to hit threshold in a controlled manner, with limited injury risk. Plus, Dr. Bakken is a big fan of the treadmill for standardization and effort control.

An athlete should probably not try double workouts until they do consistent easy doubles in a healthy and sustainable way. It’s also likely that an athlete needs to be doing relatively high training volume for this type of approach to not cause injury or risk overstress. And be extra careful with potential endocrine impacts–there’s a chance that this type of training intervention is less effective (or even counterproductive) for some female athletes.

RELATED: An Advanced 50k Training Plan For Runners

Summary

Dr. Bakken’s article has so many other brilliant tidbits, so definitely give it a full read. As with all training theory, there is no exactly right answer for everyone. But the Norwegian model’s principles are likely relevant to all endurance athletes.

Keep easy days easy. Develop speed, but don’t excessively train anaerobic processes that can detract from aerobic development. Controlled intervals are often more effective for aerobic development, and you shouldn’t be racing workouts.

And as for double workouts, lactate measurements, and massive weekly training volumes? Well, your experiences may vary. But it’s exciting as hell to explore the next frontiers in training theory.

 

David Roche partners with runners of all abilities through his coaching service, Some Work, All Play. With Megan Roche, M.D., he hosts the Some Work, All Play podcast on running (and other things), and they wrote a book called The Happy Runner.